

TECHNICAL SHEET IDYLLA™ GENEFUSION PANEL

Intended Use

The Biocartis Idylla™ GeneFusion Panel is a fully automated in vitro diagnostic test intended for the qualitative detection of specific gene fusions of ALK, ROS1, RET as well as MET exon 14 skipping. The Idylla™ GeneFusion Panel is intended for use with formalin-fixed, paraffinembedded (FFPE) tumor tissue sections from patients with non-small cell lung cancer (NSCLC). The Idylla™ GeneFusion Panel covers the entire process from sample to result, including fully integrated RNA and DNA extraction, reverse transcription of mRNA, real-time PCR amplification and detection, data analysis, and result reporting.

Indications for Use

The Idylla™ GeneFusion Panel is for use by healthcare professionals for identifying the panel gene rearrangements for patients with NSCLC, to predict the most appropriate treatment options. The Idylla™ GeneFusion Panel is not intended to diagnose NSCLC.

FEATURES

Fusion specific detection			
	EML4-ALK	EML4 exon 2; ALK exon 20	
		EML4 exon 6a; ALK exon 20	
		EML4 exon 6b; ALK exon 20	
		EML4 exon 13; ALK exon 20	
		EML4 exon 15; ALK exon 20	
		EML4 exon 17; ALK exon 20	
		EML4 exon 18; ALK exon 20	
		EML4 exon 20; ALK exon 20	
ALK fusions (17)	KIF5B-ALK	KIF5B exon 15; ALK exon 20	
		KIF5B exon 17; ALK exon 20	
		KIF5B exon 24; ALK exon 20	
	HIP1-ALK	HIP1 exon 28; ALK exon 20	
		HIP1 exon 30; ALK exon 20	
	KLC1-ALK	KLC1 exon 9; ALK exon 20	
	TPR-ALK	TPR exon 15; ALK exon 20	
	TFG-ALK	TFG exon 4; ALK exon 20	
		TFG exon 6; ALK exon 20	

Fusion specific detection - continued				
	CD74-ROS1	CD74 exon 6; ROS1 exon 32		
	CD/4-RO31	CD74 exon 6; ROS1 exon 34		
		SDC4 exon 2; ROS1 exon 32		
	SDC4-ROS1	SDC4 exon 4; ROS1 exon 32		
		SDC4 exon 4; ROS1 exon 34		
		SLC34A2 exon 4; ROS1 exon 32		
ROS1 fusions (13)	SLC34A2-ROS1	SLC34A2 exon 4; ROS1 exon 34		
		SLC34A2 exon 13; ROS1 exon 32		
	EZR-ROS1	EZR exon 10; ROS1 exon 34		
	TPM3-ROS1	TPM3 exon 8; ROS1 exon 35		
	GOPC-ROS1	GOPC exon 4; ROS1 exon 36		
	GOPC-ROSI	GOPC exon 8; ROS1 exon 35		
	LRIG3-ROS1	LRIG3 exon 16; ROS1 exon 35		
		KIF5B exon 15; RET exon 11		
		KIF5B exon 15; RET exon 12		
	KIF5B-RET	KIF5B exon 16; RET exon 12		
RET fusions (7)	KIF3D-KET	KIF5B exon 22; RET exon 12		
		KIF5B exon 23; RET exon 12		
		KIF5B exon 24; RET exon 11		
	CCDC6-RET	CCDC6 exon 1; RET exon 12		
MET exon 14 skipping	MET exon 14 skipping	MET exon 14 skipping transcript detection at the exon 13-exon 15 junction		

Expression imbalance detection

ALK expression imbalance ROS1 expression imbalance RET expression imbalance Expression imbalance measures the difference between the 3' gene expression level and the 5' gene expression of the kinase gene.

Expression imbalance results are only reported in case the specific fusion is not detected. A 'detected' expression imbalance result is indicative for the presence of a fusion and the result should be used in combination with an alternative gene fusion test method (e.g. IHC, FISH or NGS).

Internal GeneFusion controls	
RNA Housekeeping gene 1	ERCC3
RNA Housekeeping gene 2	TMUB2
RNA MET Wild Type	Detection of the Wild Type MET isoform mRNA containing the MET exon 14 sequence
DNA control	KIF11

Minimum specimen requirements

Sample type $1 \times 5 \mu m$ FFPE tissue section if tissue area $\geq 20 \text{ mm}^2$

3 x 5 μm FFPE tissue sections if tissue area < 20 mm²

Neoplastic cells \geq 10%, if less macrodissection is required

Total turnaround time

Time Approx. 180 minutes

Analytical performance

Gene rearrangement LoD in copies / Cartridge

ALK 3 000 - 10 000

Analytical sensitivity ROS1 3 000

RET 5 000

METex14 skipping 3 000

Between laboratory

reproducibility
(648 results at 3 sites with 6

artificial FFPE samples)

99% agreement

(645/648)

Between lot

reproducibility 98.9% agreement

(96 results on 3 lots with 4 clinical FFPE samples)

(95/96)

Clinical performance

The clinical performance evaluation compared the Idylla™ GeneFusion Panel with IHC (VENTANA ALK (D5F3) Assay, Roche Diagnostics GmbH) for ALK. ROS1, RET and METex14 were compared with NGS (Oncomine™ Focus Assay, Thermo Fisher Scientific). PPA, NPA and OPA for ALK, ROS1 and RET were calculated based on fusion specific results only as well as by combining the fusion specific results with the expression imbalance results.

Concordance of the Idylla $\mbox{\tt M}$ GeneFusion Panel versus IHC for ALK.

ALK	Fusion Specific Results Only		Including Confirmed* Expression Imbalance	
	Rate	Agreement (%)	Rate	Agreement (%)
PPA	34/38	89.5%	38/38	100.0%
NPA	118/119	99.2%	118/119	99.2%
OPA	152/157	96.8%	156/157	99.4%

^{*} Confirmed = samples that are expression Imbalance positive using the Idylla[™] GeneFusion Panel and that were confirmed with the reference method. Expression imbalance results are indicative for the presence of a fusion and should be confirmed with another technology.

Concordance of the Idylla™ GeneFusion Panel versus NGS for ROS1.

ROS1	Fusion Specific Results Only		Including Confirmed* Expression Imbalance	
	Rate	Agreement (%)	Rate	Agreement (%)
PPA	12/15**	80.0%	12/15	80.0%
NPA	187/187	100.0%	187/187	100.0%
OPA	199/202	98.5%	199/202	98.5%

^{*} Confirmed = samples that are expression Imbalance positive using the Idylla™ GeneFusion Panel and that were confirmed with the reference method. Expression imbalance results are indicative for the presence of a fusion and should be confirmed with another technology.

Concordance of the Idylla™ GeneFusion Panel versus NGS for RET.

RET	Fusion Specific Results Only		Including Confirmed* Expression Imbalance	
	Rate	Agreement (%)	Rate	Agreement (%)
PPA	13/14	92.9%	14/14	100.0%
NPA	187/188	99.5%	187/188	99.5%
OPA	200/202	99.0%	201/202	99.5%

^{*} Confirmed = samples that are expression Imbalance positive using the Idylla™ GeneFusion Panel and that were confirmed with the reference method. Expression imbalance results are indicative for the presence of a fusion and should be confirmed with another technology.

Concordance of the Idylla™ GeneFusion Panel versus NGS for METex14 skipping.

METex14	Rate	Agreement (%)
PPA	48/53*	90.6%
NPA	149/149	100.0%
ОРА	197/202	97.5%

^{*} Of the 5 discordant METex14 positive samples, the Oncomine™ Focus Assay indicated that there was a low read count for 4 of the 5 samples.

LoD: Limit of Detection - PPA: Positive Percent Agreement - NPA: Negative Percent Agreement - OPA: Overall Percent Agreement

Catalog number

Idylla™ GeneFusion Panel A0120/6

The Idylla™ GeneFusion Panel contains SuperScript™ III Reverse Transcriptase and is provided subject to a license under patents or patent applications owned by or licensed to Life Technologies Corporation, which license is limited to the human diagnostic field and research field and specifically excludes applications in forensics (including human identity testing). The SuperScript™ III trademark is owned by Life Technologies Corporation. Patents US 7,700,339, 8,168,383, 8,481,279, 8,486,645, 8,232,060, 8,288,102, 8,377,642, 9,988,688, 9,523,130, 9,096,855, 10,526,661, 9,364,477, 9,539,254,10,551,383 and pending US applications and all their respective foreign equivalents under license from Cell Signaling Technology, Inc. Idylla™ Platform and Idylla™ GeneFusion Panel are CE-marked IVDs in Europe. Idylla™ is available for sale in EU, USA and many other countries. Please check availability with the local Biocartis representative. © Biocartis NV, June 2022 OUS.FL051.EN.N.06/2022

 $^{^{**}}$ Of the 3 discordant ROS1 positive samples, the Oncomine $^{\mathrm{m}}$ Focus Assay indicated that there was a low read count for 2 of the 3 samples. All 3 discordant samples tested negative for ROS1 with IHC.